DocumentCode :
257492
Title :
An evolutionary algorithm with double strategy for global optimization problems
Author :
Jianqin Liu ; Ning Li ; Yang Zhao
Author_Institution :
Dept. of Int. Educ., Shijiazhuang Inf. Eng. Vocational Coll., Shijiazhuang, China
fYear :
2014
fDate :
4-6 June 2014
Firstpage :
241
Lastpage :
244
Abstract :
In this paper, we propose a novel evolutionary algorithm with double strategy (DSEA), and prove the asymptotic convergence of DSEA by using the Markov-chain theory. For five high dimension Benchmark functions, the simulation calculation shows that DSEA is superior to PSO and DE, and it is very suitable to solve the global optimization problems.
Keywords :
Markov processes; convergence; evolutionary computation; optimisation; DSEA; Markov-chain theory; asymptotic convergence; evolutionary algorithm with double strategy; global optimization problems; high dimension benchmark functions; Sociology; Statistics; Evolutionary algorithm; asymptotic convergence; benchmark functions; double strategy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th International Conference on
Conference_Location :
Taiyuan
Type :
conf
DOI :
10.1109/ICIS.2014.6912141
Filename :
6912141
Link To Document :
بازگشت