DocumentCode :
257543
Title :
Evaluation of ANN estimation-based MPPT control for a DFIG wind turbine
Author :
Chun Wei ; Liyan Qu ; Wei Qiao
Author_Institution :
Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA
fYear :
2014
fDate :
24-26 July 2014
Firstpage :
1
Lastpage :
6
Abstract :
This paper proposes an artificial neuronal network (ANN) estimation-based wind speed sensolress MPPT algorithm for wind turbines equipped with doubly-fed induction generators (DFIG). The ANN is designed to produce the optimal control signal for the DFIG power or speed controller. The optimal parameters of the ANN are determined by using a particle swarm optimization (PSO) algorithm. A 3.6 MW DFIG wind turbine is simulated in PSCAD to evaluate and compare the proposed MPPT method with the traditional tip speed ratio (TSR) and turbine power profile-based MPPT methods in both the speed control and power control modes in variable wind speed conditions.
Keywords :
asynchronous generators; maximum power point trackers; neural nets; optimal control; particle swarm optimisation; power control; sensorless machine control; velocity control; wind turbines; ANN estimation based MPPT control; DFIG wind turbine; PSO algorithm; artificial neuronal network; doubly fed induction generators; optimal control signal; particle swarm optimization; power control; speed control; tip speed ratio; turbine power profile; variable wind speed; wind speed sensolress MPPT algorithm; Artificial neural networks; Equations; Estimation; Inductance; Lead; Turbines; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Electronics and Machines for Wind and Water Applications (PEMWA), 2014 IEEE Symposium
Conference_Location :
Milwaukee, WI
Print_ISBN :
978-1-4799-5137-6
Type :
conf
DOI :
10.1109/PEMWA.2014.6912224
Filename :
6912224
Link To Document :
بازگشت