DocumentCode
2577248
Title
Convergence properties of an iterative prediction approach to nonlinear SEM parameter estimation
Author
Farina, Marcello ; Piroddi, Luigi
Author_Institution
Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy
fYear
2010
fDate
15-17 Dec. 2010
Firstpage
7226
Lastpage
7231
Abstract
This work extends to the nonlinear framework some previous results concerning the convergence of simulation error minimization (SEM) methods for parameter estimation based on an iterative predictor estimation with increasing prediction horizon. Conditions for the applicability of the approach to various model classes, including bilinear, Hammerstein, Wiener and LPV models, are also discussed. The effectiveness of the iterative predictor estimation approach is then shown by means of a simulation example.
Keywords
iterative methods; minimisation; nonlinear systems; parameter estimation; Hammerstein model; LPV models; Wiener model; bilinear model; convergence properties; iterative predictor estimation approach; nonlinear SEM parameter estimation; simulation error minimization methods; Estimation; Mathematical model; Noise; Numerical analysis; Parameter estimation; Polynomials; Predictive models;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location
Atlanta, GA
ISSN
0743-1546
Print_ISBN
978-1-4244-7745-6
Type
conf
DOI
10.1109/CDC.2010.5717738
Filename
5717738
Link To Document