DocumentCode :
2579305
Title :
Recurrent Neural Associative Learning of Forward and Inverse Kinematics for Movement Generation of the Redundant PA-10 Robot
Author :
Reinhart, Rene Felix ; Steil, Jochen J.
Author_Institution :
Res. Inst. for Cognition & Robot. - CoR-Lab., Bielefeld Univ., Bielefeld
fYear :
2008
fDate :
6-8 Aug. 2008
Firstpage :
35
Lastpage :
40
Abstract :
We present a connectionist approach to learn forward and redundant inverse kinematics in a single recurrent network. The network architecture extends the reservoir computing idea, i.e. to read out the state of a fixed dynamic system, into an associative setting, which learns the forward and backward mapping simultaneously. For output learning we use efficient Backpropagation-Decorrelation learning while the recurrent dynamics is adjusted by an unsupervised biologically inspired learning rule based on intrinsic plasticity. Including linear connections between input and output allows to train the network for autonomous movement generation. We show results for the 7-DOF redundant PA-10 robot arm in simulation.
Keywords :
backpropagation; manipulator dynamics; mobile robots; recurrent neural nets; redundant manipulators; unsupervised learning; backpropagation-decorrelation learning; fixed dynamic system; forward kinematics; intrinsic plasticity; inverse kinematics; recurrent neural associative learning; redundant PA-10 robot movement generation; reservoir computing idea; unsupervised biologically inspired learning rule; Biological system modeling; Biology computing; Brain modeling; Cognitive robotics; Computer networks; Inverse problems; Kinematics; Neurons; Reservoirs; Robots; PA-10; kinematics learning; pattern generation; recurrent neural network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Learning and Adaptive Behaviors for Robotic Systems, 2008. LAB-RS '08. ECSIS Symposium on
Conference_Location :
Edinburgh
Print_ISBN :
978-0-7695-3272-1
Type :
conf
DOI :
10.1109/LAB-RS.2008.17
Filename :
4599424
Link To Document :
بازگشت