DocumentCode :
2579320
Title :
Cache bursts: A new approach for eliminating dead blocks and increasing cache efficiency
Author :
Liu, Haiming ; Ferdman, Michael ; Huh, Jaehyuk ; Burger, Doug
Author_Institution :
Dept. of Comput. Sci., Univ. of Texas at Austin, Austin, TX
fYear :
2008
fDate :
8-12 Nov. 2008
Firstpage :
222
Lastpage :
233
Abstract :
Data caches in general-purpose microprocessors often contain mostly dead blocks and are thus used inefficiently. To improve cache efficiency, dead blocks should be identified and evicted early. Prior schemes predict the death of a block immediately after it is accessed; however, these schemes yield lower prediction accuracy and coverage. Instead, we find that predicting the death of a block when it just moves out of the MRU position gives the best tradeoff between timeliness and prediction accuracy/coverage. Furthermore, the individual reference history of a block in the L1 cache can be irregular because of data/control dependence. This paper proposes a new class of dead-block predictors that predict dead blocks based on bursts of accesses to a cache block. A cache burst begins when a block becomes MRU and ends when it becomes non-MRU. Cache bursts are more predictable than individual references because they hide the irregularity of individual references. When used at the L1 cache, the best burst-based predictor can identify 96% of the dead blocks with a 96% accuracy. With the improved dead-block predictors, we evaluate three ways to increase cache efficiency by eliminating dead blocks early: replacement optimization, bypassing, and prefetching. The most effective approach, prefetching into dead blocks, increases the average L1 efficiency from 8% to 17% and the L2 efficiency from 17% to 27%. This increased cache efficiency translates into higher overall performance: prefetching into dead blocks outperforms the same prefetch scheme without dead-block prediction by 12% at the L1 and by 13% at the L2.
Keywords :
cache storage; microprocessor chips; LI cache; cache efficiency; data cache burst; dead block elimination; dead-block prediction; general-purpose microprocessor; Accuracy; Hardware; History; Microprocessors; Prefetching; System performance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on
Conference_Location :
Lake Como
ISSN :
1072-4451
Print_ISBN :
978-1-4244-2836-6
Electronic_ISBN :
1072-4451
Type :
conf
DOI :
10.1109/MICRO.2008.4771793
Filename :
4771793
Link To Document :
بازگشت