DocumentCode
2579634
Title
Global-local structure analysis for fault detection
Author
Fu, Ruowei ; Zhang, Muguang ; Song, Zhihuan ; Ge, Zhiqiang
Author_Institution
State Key Lab. of Ind. Control Technol., Zhejiang Univ., Hangzhou, China
fYear
2010
fDate
15-17 Dec. 2010
Firstpage
4379
Lastpage
4384
Abstract
In this paper a new dimensionality reduction technique named global-local structure analysis (GLSA) is proposed. It constructs a dual-objective optimization function, which exploits the underlying geometrical manifold and keeps the global information for dimensionality reduction simultaneously. This combines the advantages of locality preserving projections (LPP) and principal component analysis (PCA) under a unified framework. Besides, GLSA successfully avoids the singularity problem in LPP and shares the orthogonal property with PCA. A further contribution of this paper is to propose a strategy for determining the parameter η which is used to balance the subobjectives corresponding to global and local structure preservings. For fault detection purpose, two traditional statistics T2 and SPE are constructed based on the new proposed GLSA method. Case studies on a numerical example and Tennessee Eastman process demonstrate the efficiencies of GLSA in feature extraction and fault detection.
Keywords
data handling; fault diagnosis; feature extraction; optimisation; principal component analysis; statistical process control; Tennessee Eastman process; dimensionality reduction technique; dual objective optimization function; fault detection; feature extraction; global local structure analysis; locality preserving projection; principal component analysis; singularity problem; Fault detection; Manifolds; Monitoring; Nearest neighbor searches; Optimization; Principal component analysis; Process control;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location
Atlanta, GA
ISSN
0743-1546
Print_ISBN
978-1-4244-7745-6
Type
conf
DOI
10.1109/CDC.2010.5717882
Filename
5717882
Link To Document