DocumentCode :
2579660
Title :
Reconfigurable energy efficient near threshold cache architectures
Author :
Dreslinski, Ronald G. ; Chen, Gregory K. ; Mudge, Trevor ; Blaauw, David ; Sylvester, Dennis ; Flautner, Krisztian
Author_Institution :
Univ. of Michigan - Ann Arbor, Ann Arbor, MI
fYear :
2008
fDate :
8-12 Nov. 2008
Firstpage :
459
Lastpage :
470
Abstract :
Battery life is an important concern for modern embedded processors. Supply voltage scaling techniques can provide an order of magnitude reduction in energy. Current commercial memory technologies have been limited in the degree of supply voltage scaling that can be performed if they are to meet yield and reliability constraints. This has limited designers from exploring the near threshold operating regions for embedded processors. Summarizing prior work we show how proper sizing of memory cells can guarantee that the memory cell reliability in the near threshold supply voltage region matches that of a standard memory cell. However, this robustness comes with a significant area cost. We show how to employ these cells to build cache architectures that greatly reduce energy consumption. We propose an embedded processor based on these new cache architectures that operates in a low power mode, with minimal impact on full performance runtime. The proposed cache uses near threshold tolerant cache ways to reduce access energy combined with traditional cache ways to maintain performance. The access policy of the cache ways is then dynamically reconfigured to obtain energy efficient performance while minimally impacting the high performance mode runtime. Using near threshold cache architectures we show an energy reduction of 53% over a traditional filter cache. For the MIBench embedded benchmarks we show on average an 86% (7.3times) reduction in energy while in low power (10 MHz) mode with only an average 2% increase in runtime in high performance (400 MHz) mode. And for SpecInt applications we show a 77% (4.4times) reduction in energy in low power mode with only an average 4.8% increase in runtime for high performance mode. In addition we show that these trends hold from 130 nm to 45 nm technology nodes.
Keywords :
cache storage; embedded systems; memory architecture; microprocessor chips; power aware computing; reconfigurable architectures; MIBench embedded benchmarks; battery life; embedded processors; energy efficient cache architecture; energy efficient performance; filter cache; memory cell reliability; memory cell sizing; near threshold cache architecture; near threshold supply voltage region; near threshold tolerant cache; reconfigurable cache architecture; supply voltage scaling; Batteries; Costs; Energy consumption; Energy efficiency; Frequency; Logic; Maintenance; Robustness; Runtime; Threshold voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on
Conference_Location :
Lake Como
ISSN :
1072-4451
Print_ISBN :
978-1-4244-2836-6
Electronic_ISBN :
1072-4451
Type :
conf
DOI :
10.1109/MICRO.2008.4771813
Filename :
4771813
Link To Document :
بازگشت