DocumentCode :
2582072
Title :
Extended stochastic approximation algorithms for systems parameters identification
Author :
Chernyshov, Kirill R.
Author_Institution :
Lab. of Syst. Identification, V.A. Trapeznikov Inst. of Control Sci., Moscow, Russia
fYear :
2009
fDate :
18-23 May 2009
Firstpage :
908
Lastpage :
915
Abstract :
The paper presents an approach to derive stochastic approximation type algorithms used within system identification schemes. The technique proposed enables one to derive recursive identification algorithms under fairly mild assumptions with respect to noises and disturbances corrupting the system´s. The algorithms obtained do not involve inversion of the identification criterion Hessian, and are stable with respect to variation of the Hessian rank. Examples presented demonstrate preferable convergence properties of the algorithms obtained with respect to conventional recursive schemes.
Keywords :
Hessian matrices; approximation theory; recursive estimation; identification criterion Hessian; recursive estimation; recursive identification algorithms; stochastic approximation type algorithms; systems parameters identification; Approximation algorithms; Autoregressive processes; Convergence; Instruments; Parameter estimation; Polynomials; Recursive estimation; Stochastic resonance; Stochastic systems; System identification; Hessian condition number; colored disturbances; input/output model; instrumental variables; recursive estimation; system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
EUROCON 2009, EUROCON '09. IEEE
Conference_Location :
St.-Petersburg
Print_ISBN :
978-1-4244-3860-0
Electronic_ISBN :
978-1-4244-3861-7
Type :
conf
DOI :
10.1109/EURCON.2009.5167742
Filename :
5167742
Link To Document :
بازگشت