DocumentCode :
2590811
Title :
Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment?
Author :
Lourakis, Manolis I A ; Argyros, Antonis A.
Author_Institution :
Found. for Res. & Technol., Inst. of Comput. Sci., Crete
Volume :
2
fYear :
2005
fDate :
17-21 Oct. 2005
Firstpage :
1526
Abstract :
In order to obtain optimal 3D structure and viewing parameter estimates, bundle adjustment is often used as the last step of feature-based structure and motion estimation algorithms. Bundle adjustment involves the formulation of a large scale, yet sparse minimization problem, which is traditionally solved using a sparse variant of the Levenberg-Marquardt optimization algorithm that avoids storing and operating on zero entries. This paper argues that considerable computational benefits can be gained by substituting the sparse Levenberg-Marquardt algorithm in the implementation of bundle adjustment with a sparse variant of Powell´s dog leg non-linear least squares technique. Detailed comparative experimental results provide strong evidence supporting this claim
Keywords :
feature extraction; minimisation; motion estimation; Levenberg-Marquardt optimization algorithm; bundle adjustment; feature-based structure; minimization problem; motion estimation algorithms; nonlinear least squares technique; parameter estimation; sparse Levenberg-Marquardt algorithm; Cameras; Computer science; Equations; Iterative algorithms; Large-scale systems; Least squares methods; Leg; Minimization methods; Motion estimation; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on
Conference_Location :
Beijing
ISSN :
1550-5499
Print_ISBN :
0-7695-2334-X
Type :
conf
DOI :
10.1109/ICCV.2005.128
Filename :
1544898
Link To Document :
بازگشت