DocumentCode :
2592051
Title :
A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors
Author :
Ghani, T. ; Armstrong, M. ; Auth, C. ; Bost, M. ; Charvat, P. ; Glass, G. ; Hoffmann, T. ; Johnson, K. ; Kenyon, C. ; Klaus, J. ; McIntyre, B. ; Mistry, K. ; Murthy, A. ; Sandford, J. ; Silberstein, M. ; Sivakumar, S. ; Smith, P. ; Zawadzki, K. ; Thompson
Author_Institution :
Portland Technol. Dev., Intel Corp., Hillsboro, OR, USA
fYear :
2003
fDate :
8-10 Dec. 2003
Abstract :
This paper describes the details of a novel strained transistor architecture which is incorporated into a 90nm logic technology on 300mm wafers. The unique strained PMOS transistor structure features an epitaxially grown strained SiGe film embedded in the source drain regions. Dramatic performance enhancement relative to unstrained devices are reported. These transistors have gate length of 45nm and 50nm for NMOS and PMOS respectively, 1.2nm physical gate oxide and Ni salicide. World record PMOS drive currents of 700/spl mu/A//spl mu/m (high V/sub T/) and 800/spl mu/A//spl mu/m (low V/sub T/) at 1.2V are demonstrated. NMOS devices exercise a highly tensile silicon nitride capping layer to induce tensile strain in the NMOS channel region. High NMOS drive currents of 1.26mA//spl mu/m (high VT) and 1.45mA//spl mu/m (low VT) at 1.2V are reported. The technology is mature and is being ramped into high volume manufacturing to fabricate next generation Pentium/spl reg/ and Intel/spl reg/ Centrino/spl trade/ processor families.
Keywords :
CMOS logic circuits; epitaxial growth; etching; integrated circuit yield; isolation technology; semiconductor doping; 1.2 V; PMOS transistor structure; Si; epitaxially grown strained film; film thickness; halo doping profile engineering; high volume manufacturing; logic technology; next generation processor; performance enhancement; process flow sequence; salicide; selective epitaxy; shallow trench isolation; short channel effects; strained transistor architecture; substrate recess etch; yield improvement; CMOS logic circuits; CMOS technology; Germanium silicon alloys; MOS devices; MOSFETs; Manufacturing; Silicon germanium; Tensile strain; Tensile stress; Uniaxial strain;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International
Conference_Location :
Washington, DC, USA
Print_ISBN :
0-7803-7872-5
Type :
conf
DOI :
10.1109/IEDM.2003.1269442
Filename :
1269442
Link To Document :
بازگشت