• DocumentCode
    2597673
  • Title

    A General Framework for Agglomerative Hierarchical Clustering Algorithms

  • Author

    Gil-García, Reynaldo J. ; Badía-Contelles, José M. ; Pons-Porrata, Aurora

  • Author_Institution
    Center of Pattern Recognition & Data Min., Univ. de Oriente
  • Volume
    2
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    569
  • Lastpage
    572
  • Abstract
    This paper presents a general framework for agglomerative hierarchical clustering based on graphs. Different hierarchical agglomerative clustering algorithms can be obtained from this framework, by specifying an inter-cluster similarity measure, a subgraph of the 13-similarity graph, and a cover routine. We also describe two methods obtained from this framework called hierarchical compact algorithm and hierarchical star algorithm. These algorithms have been evaluated using standard document collections. The experimental results show that our methods are faster and obtain smaller hierarchies than traditional hierarchical algorithms while achieving a similar clustering quality
  • Keywords
    graph theory; pattern clustering; agglomerative hierarchical clustering algorithms; hierarchical algorithms; hierarchical compact algorithm; hierarchical star algorithm; inter-cluster similarity measure specification; similarity graph; standard document collections; subgraph; Clustering algorithms; Data mining; Data visualization; Pattern recognition; Taxonomy;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
  • Conference_Location
    Hong Kong
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-2521-0
  • Type

    conf

  • DOI
    10.1109/ICPR.2006.69
  • Filename
    1699269