DocumentCode
2597673
Title
A General Framework for Agglomerative Hierarchical Clustering Algorithms
Author
Gil-García, Reynaldo J. ; Badía-Contelles, José M. ; Pons-Porrata, Aurora
Author_Institution
Center of Pattern Recognition & Data Min., Univ. de Oriente
Volume
2
fYear
0
fDate
0-0 0
Firstpage
569
Lastpage
572
Abstract
This paper presents a general framework for agglomerative hierarchical clustering based on graphs. Different hierarchical agglomerative clustering algorithms can be obtained from this framework, by specifying an inter-cluster similarity measure, a subgraph of the 13-similarity graph, and a cover routine. We also describe two methods obtained from this framework called hierarchical compact algorithm and hierarchical star algorithm. These algorithms have been evaluated using standard document collections. The experimental results show that our methods are faster and obtain smaller hierarchies than traditional hierarchical algorithms while achieving a similar clustering quality
Keywords
graph theory; pattern clustering; agglomerative hierarchical clustering algorithms; hierarchical algorithms; hierarchical compact algorithm; hierarchical star algorithm; inter-cluster similarity measure specification; similarity graph; standard document collections; subgraph; Clustering algorithms; Data mining; Data visualization; Pattern recognition; Taxonomy;
fLanguage
English
Publisher
ieee
Conference_Titel
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location
Hong Kong
ISSN
1051-4651
Print_ISBN
0-7695-2521-0
Type
conf
DOI
10.1109/ICPR.2006.69
Filename
1699269
Link To Document