DocumentCode :
2597673
Title :
A General Framework for Agglomerative Hierarchical Clustering Algorithms
Author :
Gil-García, Reynaldo J. ; Badía-Contelles, José M. ; Pons-Porrata, Aurora
Author_Institution :
Center of Pattern Recognition & Data Min., Univ. de Oriente
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
569
Lastpage :
572
Abstract :
This paper presents a general framework for agglomerative hierarchical clustering based on graphs. Different hierarchical agglomerative clustering algorithms can be obtained from this framework, by specifying an inter-cluster similarity measure, a subgraph of the 13-similarity graph, and a cover routine. We also describe two methods obtained from this framework called hierarchical compact algorithm and hierarchical star algorithm. These algorithms have been evaluated using standard document collections. The experimental results show that our methods are faster and obtain smaller hierarchies than traditional hierarchical algorithms while achieving a similar clustering quality
Keywords :
graph theory; pattern clustering; agglomerative hierarchical clustering algorithms; hierarchical algorithms; hierarchical compact algorithm; hierarchical star algorithm; inter-cluster similarity measure specification; similarity graph; standard document collections; subgraph; Clustering algorithms; Data mining; Data visualization; Pattern recognition; Taxonomy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.69
Filename :
1699269
Link To Document :
بازگشت