DocumentCode :
2600312
Title :
An improved simulation budget allocation procedure to efficiently select the optimal subset of many alternatives
Author :
Si Zhang ; Loo Hay Lee ; Ek Peng Chew ; Chun-Hung Chen ; Hen-Yi Jen
Author_Institution :
Dept. of Ind. & Syst. Eng., Nat. Univ. of Singapore, Singapore, Singapore
fYear :
2012
fDate :
20-24 Aug. 2012
Firstpage :
230
Lastpage :
236
Abstract :
How to maximize the probability of correctly selecting the top-m designs out of k designs under a computing budget constraint is crucial in simulation optimization. We develop a new procedure to be more efficient and robust than existing ones. The asymptotic convergence rate of this new procedure achieves higher convergence rate than others in correct selection probability for subset selection problems. Numerical experiments show that the new procedure obtains a higher probability of correctly selecting the optimal subset under the same computing budget.
Keywords :
convergence; optimisation; probability; simulation; asymptotic convergence rate; budget allocation; budget constraint; selection probability; simulation optimization; subset selection problems; Approximation methods; Computational modeling; Convergence; Numerical models; Optimization; Resource management; OCBA; simulation optimization; subset selection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation Science and Engineering (CASE), 2012 IEEE International Conference on
Conference_Location :
Seoul
ISSN :
2161-8070
Print_ISBN :
978-1-4673-0429-0
Type :
conf
DOI :
10.1109/CoASE.2012.6386330
Filename :
6386330
Link To Document :
بازگشت