• DocumentCode
    2607643
  • Title

    Computation of Rotation Local Invariant Features using the Integral Image for Real Time Object Detection

  • Author

    Villamizar, Michael ; Sanfeliu, Alberto ; Andrade-Cetto, Juan

  • Author_Institution
    Inst. de Robotica i Informatica Ind., CSIC-UPC, Madrid
  • Volume
    4
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    81
  • Lastpage
    85
  • Abstract
    We present a framework for object detection that is invariant to object translation, scale, rotation, and to some degree, occlusion, achieving high detection rates, at 14 fps in color images and at 30 fps in gray scale images. Our approach is based on boosting over a set of simple local features. In contrast to previous approaches, and to efficiently cope with orientation changes, we propose the use of non-Gaussian steerable filters, together with a new orientation integral image for a speedy computation of local orientation
  • Keywords
    filtering theory; object detection; color image; gray scale image; nonGaussian steerable filter; object translation; occlusion; orientation integral image; real time object detection; rotation local invariant feature; Application software; Boosting; Color; Computer industry; Computer vision; Filters; Object detection; Object recognition; Principal component analysis; Solid modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
  • Conference_Location
    Hong Kong
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-2521-0
  • Type

    conf

  • DOI
    10.1109/ICPR.2006.399
  • Filename
    1699788