Title :
Efficient ARMA parameter estimation of non Gaussian processes by minimization of the Fisher information under cumulant constraints
Author :
Vuattoux, Jean-Luc ; Le Carpentier, Eric
Author_Institution :
Nantes Univ., France
Abstract :
The problem estimating the parameters of a non-causal ARMA system, driven by an unknown input noise with unknown probability density function (PDF) is addressed. A maximum likelihood approach is proposed in this paper. The main idea of our approach is that the assumed PDF of the input noise is the PDF minimizing the Fisher information (FI) among PDFs matching the estimated cumulants up to 4th order. This minimization problem is hard to solve, so we use an over-parameterized PDF model, which is a gaussian mixture, and minimize the FI in this set. A new parameter estimation method is given and its robustness properties are detailed. The performances of the resulting identification scheme an compared to those of another higher order method
Keywords :
autoregressive moving average processes; higher order statistics; maximum likelihood estimation; minimisation; noise; Fisher information; cumulant constraints; efficient ARMA parameter estimation; gaussian mixture; higher order method; identification scheme; input noise; maximum likelihood; minimization; nonGaussian processes; noncausal ARMA system; over-parameterized PDF model; parameter estimation method; performances; probability density function; robustness properties; Gaussian noise; Gaussian processes; Higher order statistics; Maximum likelihood estimation; Nonlinear filters; Parameter estimation; Predictive models; Probability density function; Robustness; Spectral analysis;
Conference_Titel :
Statistical Signal and Array Processing, 1996. Proceedings., 8th IEEE Signal Processing Workshop on (Cat. No.96TB10004
Conference_Location :
Corfu
Print_ISBN :
0-8186-7576-4
DOI :
10.1109/SSAP.1996.534857