DocumentCode :
2616416
Title :
Kernel estimation for quantile sensitivities
Author :
Liu, Guangwu ; Hong, L. Jeff
Author_Institution :
Hong Kong Univ. of Sci. & Technol., Kowloon
fYear :
2007
fDate :
9-12 Dec. 2007
Firstpage :
941
Lastpage :
948
Abstract :
Quantiles, also known as value-at-risk in financial applications, are important measures of random performance. Quantile sensitivities provide information on how changes in the input parameters affect the output quantiles. In this paper, we study the estimation of quantile sensitivities using simulation. We propose a new estimator by employing kernel method and show its consistency and asymptotic normality for i.i.d. data. Numerical results show that our estimator works well for the test problems.
Keywords :
estimation theory; financial management; random processes; risk analysis; sensitivity analysis; asymptotic normality; financial application; kernel estimation; quantile sensitivity estimation; random measure; value-at-risk; Financial management; Industrial engineering; Kernel; Logistics; Performance analysis; Random variables; Reactive power; Risk management; Robustness; Technology management;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference, 2007 Winter
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4244-1306-5
Electronic_ISBN :
978-1-4244-1306-5
Type :
conf
DOI :
10.1109/WSC.2007.4419690
Filename :
4419690
Link To Document :
بازگشت