Title :
2.8 A pulse-position-modulation phase-noise-reduction technique for a 2-to-16GHz injection-locked ring oscillator in 20nm CMOS
Author :
Jun-Chau Chien ; Upadhyaya, Parag ; Jung, H. ; Chen, S. ; Fang, Wanliang ; Niknejad, Ali M. ; Savoj, Jafar ; Ken Chang
Author_Institution :
Univ. of California, Berkeley, Berkeley, CA, USA
Abstract :
High-speed transceivers embedded inside FPGAs require software-programmable clocking circuits to cover a wide range of data rates across different channels [1]. These transceivers use high-frequency PLLs with LC oscillators to satisfy stringent jitter requirements at increasing data rates. However, the large area of these oscillators limits the number of independent LC-based clocking sources and reduces the flexibility offered by the FPGA. A ring-based PLL occupies smaller area but produces higher jitter. With injection-locking (IL) techniques [2-3], ring-based oscillators achieve comparable performance with their LC counterparts [4-5] at frequencies below 10GHz. Moreover, addition of a PLL to an injection-locked VCO (IL-PLL) provides injection-timing calibration and frequency tracking against PVT [3,5]. Nevertheless, applying injection-locking techniques to high-speed ring oscillators in deep submicron CMOS processes, with high flicker-noise corner frequencies at tens of MHz, poses a design challenge for low-jitter operation. Shown in Fig. 2.8.1, injection locking can be modeled as a single-pole feedback system that achieves 20dB/dec of in-band noise shaping against intrinsic VCO phase noise over a wide bandwidth [6]. As a consequence, this technique suppresses the 1/f2 noise of the VCO but not its 1/f3 noise. Note that the conventional IL-PLL is capable of shaping the VCO in-band noise at 40dB/dec [6]; however, its noise shaping is limited by the narrow PLL bandwidth due to significant attenuation of the loop gain by injection locking. To achieve wideband 2nd-order noise shaping in 20nm ring oscillators, we present a circuit technique that applies pulse-position-modulated (PPM) injection through feedback control.
Keywords :
1/f noise; CMOS integrated circuits; flicker noise; injection locked oscillators; microwave oscillators; phase locked loops; phase noise; pulse position modulation; voltage-controlled oscillators; 1/f2 noise; FPGA; LC oscillator; VCO phase noise; deep submicron CMOS process; feedback control; frequency 2 GHz to 16 GHz; frequency tracking; high-frequency PLL; high-speed ring oscillator; high-speed transceiver; injection-locked VCO; injection-locked ring oscillator; injection-locking technique; injection-timing calibration; phase-noise-reduction technique; pulse-position-modulation; ring-based PLL; single-pole feedback system; size 20 nm; software-programmable clocking circuit; Bandwidth; Injection-locked oscillators; Jitter; Noise; Phase locked loops; Ring oscillators; Voltage-controlled oscillators;
Conference_Titel :
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4799-0918-6
DOI :
10.1109/ISSCC.2014.6757334