DocumentCode :
262090
Title :
CSPs and Connectedness: P/NP Dichotomy for Idempotent, Right Quasigroups
Author :
McGrail, Robert W. ; Belk, James ; Garber, Solomon ; Wood, Japheth ; Fish, Benjamin
Author_Institution :
Reem Kayden Center for Sci. & Comput. Bard Coll., Annandle-on-Hudson, NY, USA
fYear :
2014
fDate :
22-25 Sept. 2014
Firstpage :
367
Lastpage :
374
Abstract :
In the 1990´s, Jeavons showed that every finite algebra corresponds to a class of constraint satisfaction problems. Vardi later conjectured that idempotent algebras exhibit P/NP dichotomy: Every non NP-complete algebra in this class must be tractable. Here we discuss how tractability corresponds to connectivity in Cayley graphs. In particular, we show that dichotomy in finite idempotent, right quasi groups follows from a very strong notion of connectivity. Moreover, P/NP membership is first-order axiomatizable in involutory quandles.
Keywords :
algebra; computational complexity; constraint satisfaction problems; graph theory; CSPs; Cayley graph connectivity; NP-complete algebra; P/NP membership; P/NP-complete dichotomy; constraint satisfaction problems; finite idempotent quasigroup dichotomy; first-order axiomatization; idempotent algebras; involutory quandles; right quasigroups; Algebra; Educational institutions; Marine animals; Polynomials; Roads; Scientific computing; Involutory Quandles; Malcev Term; P/NP Dichotomy; Right Quasigroups;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 16th International Symposium on
Conference_Location :
Timisoara
Print_ISBN :
978-1-4799-8447-3
Type :
conf
DOI :
10.1109/SYNASC.2014.56
Filename :
7034706
Link To Document :
بازگشت