DocumentCode :
2623620
Title :
Blurring strategies for image segmentation using a multiscale linking model
Author :
Vincken, Koen L. ; Niessen, Wiro J. ; Viergever, Max A.
Author_Institution :
Imaging Centre, Univ. Hospital Utrecht, Netherlands
fYear :
1996
fDate :
18-20 Jun 1996
Firstpage :
21
Lastpage :
26
Abstract :
Multiscale approaches are an invaluable tool for image segmentation. A vast amount of research has been devoted to the construction of different multiscale representations of an image. In this paper we use the hyperstack-a multiscale linking model for image segmentation-for an in-depth comparison of four different scale space generators with respect to segmentation results. We consider the linear (Gaussian) scale space both in the spatial and the Fourier domain, the variable conductance diffusion according to the Perona and Malik equation, and the Euclidean shortening flow. We have done experiments on MR images of the brain, for which a gold standard is available. The hyperstack proves to be rather insensitive to the underlying scale space generator
Keywords :
biomedical NMR; image segmentation; Euclidean shortening flow; Fourier domain; MR images; blurring strategies; hyperstack; image segmentation; multiscale linking model; multiscale representations; scale space generator; scale space generators; variable conductance diffusion; Differential equations; Gold; Image analysis; Image edge detection; Image resolution; Image sampling; Image segmentation; Joining processes; Kernel; Large-scale systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on
Conference_Location :
San Francisco, CA
ISSN :
1063-6919
Print_ISBN :
0-8186-7259-5
Type :
conf
DOI :
10.1109/CVPR.1996.517048
Filename :
517048
Link To Document :
بازگشت