DocumentCode :
2623647
Title :
Location-correcting codes
Author :
Roth, Ron M. ; Seroussi, Gadiel
Author_Institution :
Dept. of Comput. Sci., Israel Inst. of Technol., Haifa, Israel
fYear :
1994
fDate :
27 Jun-1 Jul 1994
Firstpage :
251
Abstract :
We study linear codes over GF(q) that can correct t channel errors assuming the error values are known. This is a counterpart to the well-known problem of erasure correction, where error values are found assuming the locations are known. We prove a Singleton-type bound on the redundancy of any t-location-correcting code (t-LCC) of length >t. Furthermore, using sphere-packing arguments, we prove a lower bound of [t/2](logq(q-1)+2logq(n/t)) on the redundancy of any t-LCC. This, in turn, implies an upper bound of O(√q) on the length of any t-LCC that attains the Singleton-type bound whenever 2⩽t≪q. We show optimal constructions of t-LCCs for t∈{1,2,n-2,n-1,n}, and constructions for other values of t that attain minimal redundancy but fall short of the asymptotic length upper bound
Keywords :
Galois fields; channel coding; decoding; error correction codes; linear codes; redundancy; telecommunication channels; Galois field; Singleton-type bound; channel errors correction; code length; decoding; erasure correction; linear codes; location-correcting codes; lower bound; optimal code constructions; redundancy; sphere-packing; upper bound; Computer errors; Computer science; Decoding; Error correction; Error correction codes; Laboratories; Milling machines; Parity check codes; Redundancy; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on
Conference_Location :
Trondheim
Print_ISBN :
0-7803-2015-8
Type :
conf
DOI :
10.1109/ISIT.1994.394991
Filename :
394991
Link To Document :
بازگشت