DocumentCode :
2627190
Title :
Practical study on real-time hand detection
Author :
Zondag, Jorn Alexander ; Gritti, Tommaso ; Jeanne, Vincent
Author_Institution :
Tech. Univ. of Eindhoven, Eindhoven, Netherlands
fYear :
2009
fDate :
10-12 Sept. 2009
Firstpage :
1
Lastpage :
8
Abstract :
In this paper we describe algorithms and image features that can be used to construct a real-time hand detector. We present our findings using the histogram of oriented gradients (HOG) features in combination with two variations of the AdaBoost algorithm. First, we compare stump and tree weak classifier. Next, we investigate the influence of a large training database. Furthermore, we compare the performance of HOG against the Haar-like features.
Keywords :
gesture recognition; gradient methods; image classification; learning (artificial intelligence); object detection; AdaBoost algorithm; histogram of oriented gradients; image features; real-time hand detection; stump weak classifier; tree weak classifier; Classification tree analysis; Detectors; Face detection; Face recognition; Histograms; Image databases; Laboratories; Lighting; Machine learning algorithms; Spatial databases;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Affective Computing and Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd International Conference on
Conference_Location :
Amsterdam
Print_ISBN :
978-1-4244-4800-5
Electronic_ISBN :
978-1-4244-4799-2
Type :
conf
DOI :
10.1109/ACII.2009.5349503
Filename :
5349503
Link To Document :
بازگشت