• DocumentCode
    26313
  • Title

    Design Optimization of Single-Layer Antireflective Coating for GaAs _{{\\bf 1-}{bm x}} P _{bm x} /Si Tandem C

  • Author

    Abdul Hadi, Sabina ; Milakovich, Tim ; Bulsara, Mayank T. ; Saylan, Sueda ; Dahlem, Marcus S. ; Fitzgerald, E.A. ; Nayfeh, Ammar

  • Author_Institution
    Masdar Inst. of Sci. & Technol., Abu Dhabi, United Arab Emirates
  • Volume
    5
  • Issue
    1
  • fYear
    2015
  • fDate
    Jan. 2015
  • Firstpage
    425
  • Lastpage
    431
  • Abstract
    Single-layer antireflective coating (SLARC) materials and design for GaAs _{{\\\\bf 1}-{\\bm x}} P _{\\bm x} /Si tandem cells were analyzed by TCAD simulation. We have shown that optimum SLARC thickness is a function of bandgap, thickness, and material quality of top GaAs _{{\\\\bf 1}-{\\bm x}}{\\\\bf P}_{\\bm x} subcell. Cells are analyzed for P fractions {\\\\bf x} ={\\\\bf 0} , 0.17, 0.29, and 0.37, and ARC materials: Si3N4, SiO2, ITO, HfO2, and Al 2O3. Optimum ARC thickness ranges from 65–75 nm for Si3N4 and ITO to ∼100–110 nm for SiO2. Optimum ARC thickness increases with increasing GaAs _{{\\\\bf 1}-{\\bm x}}{\\\\bf P}_{\\bm x} absorber layer thickness and with decreasing P fraction x. Simulations show that optimum GaAs _{{\\\\bf 1}-{\\bm x}}{\\\\bf P}_{\\bm x} absorber layer thickness is not a strong function of ARC material, but it increases from 250 nm for {\\\\bf x} ={\\\\bf 0} to ∼1 μm for {\\\\bf x} ={\\\\bf 0.29} and 0.37. For all P fractions, Si3N4, HfO2, and Al2O3 performed almost equally, while SiO2 and ITO resulted in ∼1% and ∼2% lower efficiency, respectively. Optimum SLARC thickness increases as the material quality of the top cell increases. The effect of ARC material decreases with decreasing GaAs _{{\\\\bf 1}-{\\bm x}}{\\\\bf P}_{\\bm x} material quality. The maximum efficiencies are achieved for cells with ∼1-μm GaAs0.71 P0.29 absorber ( \\\\tau = 10 ns): ∼26.57% for 75-nm Si3N4 SLARC and 27.62% for 75-nm SiO2/60-nm Si3N4 double-layer ARC.
  • Keywords
    aluminium compounds; antireflection coatings; gallium arsenide; hafnium compounds; indium compounds; semiconductor materials; silicon; silicon compounds; solar cells; tin compounds; GaAs1-xPx-Al2O3; GaAs1-xPx-HfO2; GaAs1-xPx-ITO; GaAs1-xPx-Si; GaAs1-xPx-Si3N4; GaAs1-xPx-SiO2; TCAD simulation; absorber layer thickness; bandgap function; design optimization; double-layer ARC material effect; optimum SLARC thickness; single-layer antireflective coating material design; size 65 nm to 75 nm; tandem cells; Gallium arsenide; Hafnium compounds; Indium tin oxide; Optical buffering; Photovoltaic cells; Silicon; Al2O3; Antireflective coating (ARC); GaAs1-xPx; HfO2; III--V on Si; III???V on Si; ITO; Si3N4; SiO2; Synopsys; TCAD; transfer matrix method (TMM);
  • fLanguage
    English
  • Journal_Title
    Photovoltaics, IEEE Journal of
  • Publisher
    ieee
  • ISSN
    2156-3381
  • Type

    jour

  • DOI
    10.1109/JPHOTOV.2014.2363559
  • Filename
    6945827