DocumentCode :
2632446
Title :
Reconfiguration-aware real-time scheduling under QoS constraint
Author :
Kooti, Hessam ; Mishra, Deepak ; Bozorgzadeh, Eli
Author_Institution :
Comput. Sci. Dept., Univ. of California, Irvine, CA, USA
fYear :
2011
fDate :
25-28 Jan. 2011
Firstpage :
141
Lastpage :
146
Abstract :
Due to the increase in demand for reconfigurability in embedded systems, schedulability in real-time task scheduling is challenged by non-negligible reconfiguration overheads. Reconfiguration of the system during task execution affects both deadline miss rate and deadline miss distribution. On the other hand, Quality of Service (QoS) in several embedded applications is not only determined by deadline miss rate but also the distribution of the tasks missing their deadlines (known as weakly-hard real-time systems). As a result, we propose to model QoS constraints as a set of constraints on dropout patterns (due to reconfiguration overhead) and present a novel online solution for the problem of reconfiguration-aware real-time scheduling. According to QoS constraints, we divide the ready instances of the tasks into two groups: critical and non-critical, then model each group as a network flow problem and provide an online scheduler for each group. We deployed our method on synthetic benchmarks as well as software defined radio implementation of VoIP on reconfigurable systems. Results show that our solution reduces the number of QoS violations by 19.01 times and 2.33 times (57.02%) in comparison with Bi-Modal Scheduler (BMS) for synthetic benchmarks with low and high QoS constraint, respectively.
Keywords :
Internet telephony; embedded systems; quality of service; scheduling; software radio; VoIP; bi-modal scheduler; deadline miss distribution; deadline miss rate; embedded systems; network flow problem; quality of service; reconfiguration overheads; reconfiguration-aware real-time scheduling; software defined radio; task execution; Benchmark testing; Hardware; Program processors; Protocols; Quality of service; Real time systems; Schedules;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design Automation Conference (ASP-DAC), 2011 16th Asia and South Pacific
Conference_Location :
Yokohama
ISSN :
2153-6961
Print_ISBN :
978-1-4244-7515-5
Type :
conf
DOI :
10.1109/ASPDAC.2011.5722174
Filename :
5722174
Link To Document :
بازگشت