DocumentCode :
2632542
Title :
Interscale statistical models for wavelet-based image retrieval
Author :
Sarra-Nsibi, Sakji ; Benazza-Benyahia, Amel
Author_Institution :
Ecole Super. des Commun. de Tunis (SUP´´COM), Unite de Rech. en Imagerie Satellitaire (URISA), Tunis
fYear :
2008
fDate :
16-19 Dec. 2008
Firstpage :
485
Lastpage :
490
Abstract :
In this paper, we are interested in image indexing in the wavelet transform domain. More precisely, the salient features of the image content correspond to the parameters of the statistical distribution model of the wavelet coefficients. The contribution of our work is twofold. Firstly, a very versatile multivariate interscale distribution driven by the copula theory is chosen to model the joint distribution of the homologous wavelet coefficients considered at different scales. Secondly, the search procedure associated with any request is accelerated through a tree structured search in the features space. Experimental results show that considering interscale information drastically improves the search performances.
Keywords :
image retrieval; indexing; statistical distributions; wavelet transforms; copula theory; image content; image indexing; interscale statistical models; multivariate interscale distribution; statistical distribution model; wavelet transform domain; wavelet-based image retrieval; Hidden Markov models; Image coding; Image retrieval; Indexing; Iron; Signal resolution; Transform coding; Wavelet coefficients; Wavelet domain; Wavelet transforms; copulas theory; cross-scale dependencies of wavelet coefficients; image retrieval; wavelet transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Information Technology, 2008. ISSPIT 2008. IEEE International Symposium on
Conference_Location :
Sarajevo
Print_ISBN :
978-1-4244-3554-8
Electronic_ISBN :
978-1-4244-3555-5
Type :
conf
DOI :
10.1109/ISSPIT.2008.4775695
Filename :
4775695
Link To Document :
بازگشت