DocumentCode :
2632871
Title :
Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model
Author :
Pratt, Jerry E. ; Drakunov, Sergey V.
Author_Institution :
Florida Inst. for Human & Machine Cognition, Pensacola, FL
fYear :
2007
fDate :
10-14 April 2007
Firstpage :
4653
Lastpage :
4660
Abstract :
We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the "orbital energy", given a smooth center of mass trajectory. Given a closed form center of mass trajectory, the equation for the orbital energy is a closed form expression except for an integral term, which we show to be the first moment of area under the center of mass path. Hence, given a center of mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for many classes of trajectories, such as those in which height is a polynomial function of center of mass horizontal displacement, the orbital energy can be solved in closed form. Given expressions for the orbital energy, we can compute where the foot should be placed or how the center of mass trajectory should be modified in order to achieve a desired velocity on the next step. We demonstrate our results using a planar biped simulation with light legs and point mass body. We parameterize the center of mass trajectory with a fifth order polynomial function. We demonstrate how the parameters of this polynomial and step length can be changed in order to achieve a desired next step velocity.
Keywords :
legged locomotion; nonlinear control systems; pendulums; polynomials; robot dynamics; bipedal walking model; center of mass trajectory; horizontal displacement; inverted pendulum; orbital energy conservation; point foot analysis; point mass analysis; polynomial function; Acceleration; Computational modeling; Foot; Integral equations; Leg; Legged locomotion; Motion analysis; Nonlinear equations; Polynomials; Robotics and automation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2007 IEEE International Conference on
Conference_Location :
Roma
ISSN :
1050-4729
Print_ISBN :
1-4244-0601-3
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ROBOT.2007.364196
Filename :
4209814
Link To Document :
بازگشت