DocumentCode :
2633374
Title :
Segmentation-tracking feedback approach for high-performance video surveillance applications
Author :
Cuevas, Carlos ; Del Blanco, Carlos R. ; García, Narciso ; Jaureguizar, Fernando
Author_Institution :
Grupo de Tratamiento de Imageries, Univ. Politec. de Madrid, Madrid, Spain
fYear :
2010
fDate :
23-25 May 2010
Firstpage :
41
Lastpage :
44
Abstract :
Here, a novel and efficient feedback system for moving object segmentation and tracking is proposed. Through the use of non-parametric background-foreground modeling, moving objects are correctly detected in unfavorable situations such as dynamic backgrounds or illumination changes. After detection, objects are tracked by an original multi-object Bayesian tracking algorithm, which achieves satisfactory results under partial and total occlusions. Updating the previously detected foreground data from the information provided by the tracker, the foreground modeling is improved, reducing the color similarity problem.
Keywords :
Bayes methods; image motion analysis; image segmentation; object detection; video surveillance; high-performance video surveillance applications; moving objects; multi-object Bayesian tracking algorithm; nonparametric background-foreground modeling; segmentation-tracking feedback approach; Bayesian methods; Computer vision; Feedback; Image segmentation; Lighting; Object detection; Object segmentation; Predictive models; Video sequences; Video surveillance; Bayesian tracking; Segmentation-Tracking feedback; background modeling; data association; foreground modeling; non-parametric segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Analysis & Interpretation (SSIAI), 2010 IEEE Southwest Symposium on
Conference_Location :
Austin, TX
Print_ISBN :
978-1-4244-7801-9
Type :
conf
DOI :
10.1109/SSIAI.2010.5483922
Filename :
5483922
Link To Document :
بازگشت