DocumentCode :
2634139
Title :
B-trees with relaxed balance
Author :
Larsen, Kim S. ; Fagerberg, Rolf
Author_Institution :
Dept. of Math. & Comput. Sci., Odense Univ., Denmark
fYear :
1995
fDate :
25-28 Apr 1995
Firstpage :
196
Lastpage :
202
Abstract :
B-trees with relaxed balance have been defined to facilitate first updating on shared-memory asynchronous parallel architectures. To obtain this, rebalancing has been uncoupled from the updating such that extensive locking can be avoided in connection with updates. We analyze B-trees with relaxed balance, and prove that each update gives rise to at most [loga(N/2)]+1 rebalancing operations, where a is the degree of the B-tree, and N is the bound an its maximal size since it was last in balance. Assuming that the size of nodes are at least twice the degree, we prove that rebalancing can be performed in amortized constant time. So, in the long run, rebalancing is constant time on average, even if any particular update could give rise to logarithmic time rebalancing. We also prove that the amount of rebalancing done at any particular level decreases exponentially going from the leaves towards the root. This is important since the higher up in the tree a lock due to a rebalancing operation occurs, the larger a subtree which cannot be accessed by other processes for the duration of that lock. All of these results are in fact obtained for the more general (a, b)-trees, so we have results for both of the common B-tree versions as well as 2-3 trees and 2-3-4 trees
Keywords :
parallel architectures; tree data structures; B-trees; extensive locking; maximal size; rebalancing; relaxed balance; shared-memory asynchronous parallel architectures; subtree; Computer science; Proposals;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Processing Symposium, 1995. Proceedings., 9th International
Conference_Location :
Santa Barbara, CA
Print_ISBN :
0-8186-7074-6
Type :
conf
DOI :
10.1109/IPPS.1995.395932
Filename :
395932
Link To Document :
بازگشت