DocumentCode :
2637207
Title :
Data-driven cortex parcelling: a regularization tool for the EEG/MEG inverse problem
Author :
Daunizeau, Jean ; Mattout, Jérémie ; Goulard, Bernard ; Lina, Jean-Marc ; Benali, Habib
Author_Institution :
Imagerie Medicale Quantitative, INSERM, Paris, France
fYear :
2004
fDate :
15-18 April 2004
Firstpage :
1343
Abstract :
Recent inverse approaches based on the distributed source model require the use of functionally coherent cortical regions. In this note, we present an EEG/MEG data-driven method for parceling the cortical surface into a set of connex and functionally coherent components. We therefore consider the realistic tridimensional geometry of the cortical sheet and define functional coherence criteria that rely upon the recently proposed multivariate source prelocalization (MSP). We also describe an automatic way of estimating the optimal parcelling hyperparameter, given the EEG/MEG measurements. This new approach leads to a restricted and functionally meaningful description of the inverse solution space, which might be further exploited for constraining the source reconstruction process itself.
Keywords :
electroencephalography; inverse problems; magnetoencephalography; EEG; MEG; automatic estimation; connex set; cortical surface; data-driven cortex parcelling; data-driven method; distributed source model; functional coherence criteria; functionally coherent cortical region; inverse problem; multivariate source prelocalization; optimal parcelling hyperparameter estimation; realistic tridimensional geometry; regularization tool; source reconstruction process; Brain modeling; Coherence; Electroencephalography; Gain measurement; Image reconstruction; Inverse problems; Noise measurement; Position measurement; Q measurement; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on
Print_ISBN :
0-7803-8388-5
Type :
conf
DOI :
10.1109/ISBI.2004.1398795
Filename :
1398795
Link To Document :
بازگشت