DocumentCode :
2639037
Title :
Adaptive synchronization of different dimensional chaotic systems with unknown parameters
Author :
Sun, Guanghui ; Wang, Mao ; Huang, Lilian
Author_Institution :
Space Control & Inertial Technol. Res. Center, Harbin Inst. of Technol., Harbin
fYear :
2008
fDate :
10-12 Dec. 2008
Firstpage :
1
Lastpage :
5
Abstract :
This work presents the adaptive synchronization between two different order chaotic systems with unknown parameters. Based on Lyapunov stability theory, a novel adaptive control law and a parameter update rule for unknown parameters are proposed. The proposed scheme can successfully synchronize some typical chaotic systems, such as the hyperchaotic Chen system and the Duffing equation. Numerical Simulation results verify the proposed schemepsilas effectiveness. Furthermore, the estimated values of the parameters are not identical to the real values under our discussions.
Keywords :
Lyapunov methods; adaptive control; chaos; nonlinear control systems; stability; synchronisation; Duffing equation; Lyapunov stability theory; adaptive control; adaptive synchronization; different dimensional chaotic system; hyperchaotic Chen system; parameter update rule; unknown parameter; Adaptive control; Chaos; Equations; Lyapunov method; Numerical simulation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems and Control in Aerospace and Astronautics, 2008. ISSCAA 2008. 2nd International Symposium on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4244-3908-9
Electronic_ISBN :
978-1-4244-2386-6
Type :
conf
DOI :
10.1109/ISSCAA.2008.4776350
Filename :
4776350
Link To Document :
بازگشت