DocumentCode :
2640151
Title :
Robust subspace estimation using prior information
Author :
McWhorter, Todd ; Clark, Michael
Author_Institution :
Mission Res. Corp., Monterey, CA, USA
Volume :
2
fYear :
1998
fDate :
1-4 Nov. 1998
Firstpage :
1354
Abstract :
We derive robust estimators of the parameters in a linear subspace model. Like total least squares (TLS), these estimators allow for errors in both the data and in the subspace model. However, unlike total least squares, these estimators allow the perturbation of the model to be constrained. These constraints have simple geometric interpretations and allow for various levels of confidence in the a priori signal model. The estimators of this paper are also distinguished from the TLS in that they are invariant to certain arbitrary scalings and rotations of the signal model. This property, which the TLS does not possess, is shown to be essential for certain estimation problems.
Keywords :
parameter estimation; parameter space methods; signal detection; a priori signal model; confidence levels; constrained perturbation; geometric interpretations; linear subspace model; optimization problem; parameter estimation; prior information; robust subspace estimation; rotations; scalings; signal detection; signal model; total least squares; Bismuth; Buildings; Detectors; Least squares approximation; Optimization methods; Parameter estimation; Robustness; Solid modeling; Uncertainty; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-5148-7
Type :
conf
DOI :
10.1109/ACSSC.1998.751546
Filename :
751546
Link To Document :
بازگشت