DocumentCode :
2640314
Title :
A Moebius matrix representation for real symmetric Toeplitz matrices
Author :
Feyh, German
Author_Institution :
Cirrus Logic, Broomfield, CO, USA
Volume :
2
fYear :
1998
fDate :
1-4 Nov. 1998
Firstpage :
1392
Abstract :
Several representations of real symmetric Toeplitz matrices are known. The Caratheodory representation is built on Vandermonde and diagonal matrices. The LU decomposition is used in linear prediction. Here a new representation of the real symmetric Toeplitz matrix is introduced as the sum of a class of Moebius matrices. The class of Moebius matrices M used here maps Toeplitz matrices T onto Toeplitz matrices via the transformation T/sub 1/=M*TM. Using the properties this class of Moebius matrices one can reformulate the problem as a Prony spectral estimation problem.
Keywords :
Toeplitz matrices; eigenvalues and eigenfunctions; matrix decomposition; parameter estimation; prediction theory; spectral analysis; Caratheodory representation; LU decomposition; Moebius matrix representation; Prony spectral estimation problem; Vandermonde matrix; diagonal matrix; eigendecomposition; linear prediction; real symmetric Toeplitz matrices; Equations; Logic; Matrix decomposition; Polynomials; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-5148-7
Type :
conf
DOI :
10.1109/ACSSC.1998.751555
Filename :
751555
Link To Document :
بازگشت