DocumentCode :
2640963
Title :
Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis
Author :
Bro, R. ; Sidiropoulos, N.D. ; Giannakis, G.B.
Author_Institution :
Chemometrics Group, Food Tech., R. Veterinary & Agric. Univ., Frederiksberg, Denmark
Volume :
2
fYear :
1998
fDate :
1-4 Nov. 1998
Firstpage :
1594
Abstract :
We consider deterministic joint azimuth-elevation, signal, and array response estimation, and establish a direct link to parallel factor (PARAFAC) analysis, a tool with roots in linear algebra for multi-way arrays. This link affords a powerful identifiability result, plus the opportunity to tap on and extend the available expertise for fitting the PARAFAC model, to derive a deterministic (least squares) joint estimation algorithm, also applicable to multiple-parameter/multiple-invariance ESPRIT subspace fitting problems. These and other issues are demonstrated in pertinent simulation experiments.
Keywords :
array signal processing; deterministic algorithms; least squares approximations; linear algebra; optimisation; parameter estimation; ESPRIT subspace fitting problems; PARAFAC model; deterministic joint estimation algorithm; identifiability result; least squares estimation algorithm; linear algebra; multi-way arrays; multiple-parameter/multiple-invariance problems; optimal joint azimuth-elevation estimation; parallel factor analysis; signal-array response estimation; simulation experiments; Azimuth; Data models; Electric variables measurement; Food technology; Least squares methods; Linear algebra; Narrowband; Noise measurement; Sensor arrays; Signal analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-5148-7
Type :
conf
DOI :
10.1109/ACSSC.1998.751595
Filename :
751595
Link To Document :
بازگشت