DocumentCode :
2645219
Title :
Dynamic Visual Saliency Modeling for Video Semantics
Author :
Chen, Duan-Yu ; Tyan, Hsiao-Rong ; Shih, Sheng-Wen ; Liao, Hong-Yuan Mark
Author_Institution :
Inst. of Inf. Sci., Acad. Sinica, Taipei
fYear :
2008
fDate :
15-17 Aug. 2008
Firstpage :
188
Lastpage :
191
Abstract :
In this work, we propose a novel approach for modeling dynamic visual attention based on spatiotemporal analysis. Our model first detects salient points in three-dimensional video volumes, and then uses them as seeds to search the extent of salient regions in a motion attention map. To determine the extent of attended regions, the maximum entropy in the spatial domain is used to analyze the dynamics obtained from spatiotemporal analysis. To annotate video semantics, the extent of attended regions is further recognized as two predefined categories by using orientation filters, cars and people. The experiment results show that the proposed dynamic visual attention model can effectively detect visual saliency through successive video volumes.
Keywords :
feature extraction; image sequences; video retrieval; video signal processing; dynamic visual attention model; dynamic visual saliency modeling; maximum entropy; spatiotemporal analysis; successive video volumes; three-dimensional video volumes; video semantics; Computational modeling; Entropy; Filters; Information science; Layout; Psychology; Spatiotemporal phenomena; Video sequences; Video signal processing; Videoconference; spatiotemporal analysis; visual attention;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Hiding and Multimedia Signal Processing, 2008. IIHMSP '08 International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-0-7695-3278-3
Type :
conf
DOI :
10.1109/IIH-MSP.2008.306
Filename :
4604036
Link To Document :
بازگشت