DocumentCode :
2645295
Title :
New lower bounds for halfspace emptiness
Author :
Erickson, Jeff
Author_Institution :
Comput. Sci. Div., California Univ., Berkeley, CA, USA
fYear :
1996
fDate :
14-16 Oct 1996
Firstpage :
472
Lastpage :
481
Abstract :
The author derives a lower bound of Ω(n4/3) for the halfspace emptiness problem: given a set of n points and n hyperplanes in R5, is every point above every hyperplane? This matches the best known upper bound to within polylogarithmic factors, and improves the previous best lower bound of Ω(nlogn). The lower bound applies to partitioning algorithms in which every query region is a polyhedron with a constant number of facets
Keywords :
computational complexity; computational geometry; linear programming; facets; halfspace emptiness; hyperplanes; lower bounds; partitioning algorithms; points; polyhedron; polylogarithmic factors; query region; Buildings; Computational modeling; Computer science; Data structures; Ear; H infinity control; Linear programming; Marine vehicles; Partitioning algorithms; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on
Conference_Location :
Burlington, VT
ISSN :
0272-5428
Print_ISBN :
0-8186-7594-2
Type :
conf
DOI :
10.1109/SFCS.1996.548506
Filename :
548506
Link To Document :
بازگشت