Title :
The properties of Gabor wavelet transform
Author :
Deng, Cai-xia ; Fu, Zuo-xian ; Ma, Xiao-Jian
Author_Institution :
Harbin Univ. of Sci. & Technol., Harbin
Abstract :
The expression of the reproducing kernel function and the isometric identities of the image space of Gabor wavelet transform are shown in this paper. By the construction of the reproducing kernel function the authors show that the general and concrete properties of the image space of Gabor wavelet transform based on the image space of the continuous wavelet transform is a reproducing kernel Hilbert space. This provides the theoretic basis for discussing the image space of general wavelet transform.
Keywords :
Hilbert spaces; image processing; wavelet transforms; Gabor wavelet transform; Hilbert space; continuous wavelet transform; isometric image space identity; reproducing kernel function; Continuous wavelet transforms; Hilbert space; Image analysis; Kernel; Mathematics; Pattern analysis; Pattern recognition; Space technology; Wavelet analysis; Wavelet transforms; Gabor wavelet; reproducing kernel; wavelet transform;
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2007. ICWAPR '07. International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-1065-1
Electronic_ISBN :
978-1-4244-1066-8
DOI :
10.1109/ICWAPR.2007.4421688