• DocumentCode
    2647584
  • Title

    Optimal parameter choice for a class of cubic interpolation kernels and the associated error analysis

  • Author

    Aggarwal, Manoj ; Gadre, Vikram

  • Author_Institution
    Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA
  • Volume
    3
  • fYear
    1996
  • fDate
    16-19 Sep 1996
  • Firstpage
    723
  • Abstract
    Two issues related to a class of cubic kernels for interpolation with a single free parameter are addressed in this paper. The first issue relates to parametrizing the cubic interpolation kernel optimally for arbitrary kernel length keeping in view the need to cancel all error terms up to the second order. This builds upon the results of Keys (1981) where the optimal parameter value is obtained only for a kernel length of 2. The second issue relates to obtaining a precise mathematical formulation for the advantage gained in increasing the kernel length. The associated third order error analysis shows that the error coefficients decrease monotonically in magnitude with an increase in the kernel length. Asymptotic results are also obtained for the spline length tending to infinity
  • Keywords
    error analysis; image processing; interpolation; splines (mathematics); asymptotic results; cubic interpolation kernels; error analysis; error coefficients; error terms; images; kernel length; mathematical formulation; optimal parameter choice; optimal parameter value; parameterization; spline length; third order error analysis; Closed-form solution; Error analysis; H infinity control; Image processing; Interpolation; Kernel; Satellites; Signal processing; Spline; Taylor series;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 1996. Proceedings., International Conference on
  • Conference_Location
    Lausanne
  • Print_ISBN
    0-7803-3259-8
  • Type

    conf

  • DOI
    10.1109/ICIP.1996.560787
  • Filename
    560787