DocumentCode
2647584
Title
Optimal parameter choice for a class of cubic interpolation kernels and the associated error analysis
Author
Aggarwal, Manoj ; Gadre, Vikram
Author_Institution
Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA
Volume
3
fYear
1996
fDate
16-19 Sep 1996
Firstpage
723
Abstract
Two issues related to a class of cubic kernels for interpolation with a single free parameter are addressed in this paper. The first issue relates to parametrizing the cubic interpolation kernel optimally for arbitrary kernel length keeping in view the need to cancel all error terms up to the second order. This builds upon the results of Keys (1981) where the optimal parameter value is obtained only for a kernel length of 2. The second issue relates to obtaining a precise mathematical formulation for the advantage gained in increasing the kernel length. The associated third order error analysis shows that the error coefficients decrease monotonically in magnitude with an increase in the kernel length. Asymptotic results are also obtained for the spline length tending to infinity
Keywords
error analysis; image processing; interpolation; splines (mathematics); asymptotic results; cubic interpolation kernels; error analysis; error coefficients; error terms; images; kernel length; mathematical formulation; optimal parameter choice; optimal parameter value; parameterization; spline length; third order error analysis; Closed-form solution; Error analysis; H infinity control; Image processing; Interpolation; Kernel; Satellites; Signal processing; Spline; Taylor series;
fLanguage
English
Publisher
ieee
Conference_Titel
Image Processing, 1996. Proceedings., International Conference on
Conference_Location
Lausanne
Print_ISBN
0-7803-3259-8
Type
conf
DOI
10.1109/ICIP.1996.560787
Filename
560787
Link To Document