DocumentCode :
2652143
Title :
Improving Potts MRF model parameter estimation using higher-order neighborhood systems on stochastic image modeling
Author :
Levada, Alexandre L M ; Mascarenhas, Nelson D A ; Tannús, Alberto
Author_Institution :
Phys. Inst. of Sao Carlos, Univ. of Sao Paulo, Sao Paulo
fYear :
2008
fDate :
25-28 June 2008
Firstpage :
385
Lastpage :
388
Abstract :
This paper presents a novel pseudo-likelihood equation for the estimation of the Potts MRF model parameter on third-order neighborhood systems, allowing the modeling of less restrictive contextual systems in a large number of MRF applications in a computationally feasible way. The evaluation is done by a hypothesis testing approach using our approximation for the maximum pseudo-likelihood (MPL) estimator asymptotic variance. The test statistics together with the p-values, provide a complete framework for quantitative analysis in MRF parameter estimation on stochastic image modeling.
Keywords :
Markov processes; image processing; maximum likelihood estimation; Markov random field; Potts MRF model; estimator asymptotic variance; maximum pseudo-likelihood equation; p-values; stochastic image modeling; test statistics; third-order neighborhood system; Context modeling; Electronic mail; Equations; Markov random fields; Parameter estimation; Physics computing; Road transportation; Stochastic processes; Stochastic systems; Testing; Markov Random Fields; Maximum Pseudo-Likelihood; Potts Model; Stochastic Image Modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th International Conference on
Conference_Location :
Bratislava
Print_ISBN :
978-80-227-2856-0
Electronic_ISBN :
978-80-227-2880-5
Type :
conf
DOI :
10.1109/IWSSIP.2008.4604447
Filename :
4604447
Link To Document :
بازگشت