DocumentCode :
2653145
Title :
Reductions between Expansion Problems
Author :
Raghavendra, Prasad ; Steurer, David ; Tulsiani, Madhur
Author_Institution :
Georgia Inst. of Technol., Atlanta, GA, USA
fYear :
2012
fDate :
26-29 June 2012
Firstpage :
64
Lastpage :
73
Abstract :
The Small-Set Expansion Hypothesis (Raghavendra, Steurer, STOC 2010) is a natural hardness assumption concerning the problem of approximating the edge expansion of small sets in graphs. This hardness assumption is closely connected to the Unique Games Conjecture (Khot, STOC 2002). In particular, the Small-Set Expansion Hypothesis implies the Unique Games Conjecture (Raghavendra, Steurer, STOC 2010). Our main result is that the Small-Set Expansion Hypothesis is in fact equivalent to a variant of the Unique Games Conjecture. More precisely, the hypothesis is equivalent to the Unique Games Conjecture restricted to instance with a fairly mild condition on the expansion of small sets. Alongside, we obtain the first strong hardness of approximation results for the Balanced Separator and Minimum Linear Arrangement problems. Before, no such hardness was known for these problems even assuming the Unique Games Conjecture. These results not only establish the Small-Set Expansion Hypothesis as a natural unifying hypothesis that implies the Unique Games Conjecture, all its consequences and, in addition, hardness results for other problems like Balanced Separator and Minimum Linear Arrangement, but our results also show that the Small-Set Expansion Hypothesis problem lies at the combinatorial heart of the Unique Games Conjecture. The key technical ingredient is a new way of exploiting the structure of the Unique Games instances obtained from the Small-Set Expansion Hypothesis via (Raghavendra, Steurer, 2010). This additional structure allows us to modify standard reductions in a way that essentially destroys their local-gadget nature. Using this modification, we can argue about the expansion in the graphs produced by the reduction without relying on expansion properties of the underlying Unique Games instance (which would be impossible for a local-gadget reduction).
Keywords :
approximation theory; game theory; graph theory; set theory; approximation hardness; balanced separator problem; edge expansion; graphs; local gadget nature; minimum linear arrangement problem; small-set expansion hypothesis; unique game conjecture; Approximation algorithms; Approximation methods; Eigenvalues and eigenfunctions; Games; Image edge detection; Labeling; Particle separators; Balanced separator; Minimum linear arrangement; Small set expansion; Unique games conjecture;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on
Conference_Location :
Porto
ISSN :
1093-0159
Print_ISBN :
978-1-4673-1663-7
Type :
conf
DOI :
10.1109/CCC.2012.43
Filename :
6243382
Link To Document :
بازگشت