Author :
Cygan, Marek ; Dell, Holger ; Lokshtanov, Daniel ; Marx, Dániel ; Nederlof, Jesper ; Okamoto, Yoshio ; Paturi, Ramamohan ; Saurabh, Saket ; Wahlström, Magnus
Abstract :
The field of exact exponential time algorithms for NP-hard problems has thrived over the last decade. While exhaustive search remains asymptotically the fastest known algorithm for some basic problems, difficult and non-trivial exponential time algorithms have been found for a myriad of problems, including GRAPH COLORING, HAMILTONIAN PATH, DOMINATING SET and 3-CNF-SAT. In some instances, improving these algorithms further seems to be out of reach. The CNF-SAT problem is the canonical example of a problem for which the trivial exhaustive search algorithm runs in time O(2n), where n is the number of variables in the input formula. While there exist non-trivial algorithms for CNF-SAT that run in time o(2n), no algorithm was able to improve the growth rate 2 to a smaller constant, and hence it is natural to conjecture that 2 is the optimal growth rate. The strong exponential time hypothesis (SETH) by Impagliazzo and Paturi [JCSS 2001] goes a little bit further and asserts that, for every ϵ <; 1, there is a (large) integer k such that that K-CNF-SAT cannot be computed in time 2ϵn. In this paper, we show that, for every ϵ <; 1, the problems HITTING SET, SET SPLITTING, and NAE-SAT cannot be computed in time O(2ϵn) unless SETH fails. Here n is the number of elements or variables in the input. For these problems, we actually get an equivalence to SETH in a certain sense. We conjecture that SETH implies a similar statement for SET COVER, and prove that, under this assumption, the fastest known algorithms for STEINTER TREE, CONNECTED VERTEX COVER, SET PARTITIONING, and the pseudo-polynomial time algorithm for SUBSET SUM cannot be significantly improved. Finally, we justify our assumption about the hardness of SET COVER by showing that the parity of the number of set covers.
Keywords :
computational complexity; graph theory; search problems; set theory; CNF-SAT problem; NAE-SAT; NP-hard problems; SETH; Steinter tree; connected vertex cover; dominating set; exact exponential time algorithms; exhaustive search algorithm; graph coloring; hamiltonian path; hitting set; optimal growth rate; pseudo-polynomial time algorithm; set cover; set partitioning; set splitting; strong exponential time hypothesis; subset sum; Algorithm design and analysis; Educational institutions; Force; Heuristic algorithms; Partitioning algorithms; Search problems; Steiner trees; Exponential Time Algorithms; Sparsification Lemma; Strong Exponential Time Hypothesis;