DocumentCode :
2654180
Title :
Real-time parallel parameter estimators for a second-order macroscopic traffic flow model
Author :
Wang, Yun ; Ioannou, Petros A.
Author_Institution :
Dept. of Electr. Eng.-Syst., Southern California Univ., Los Angeles, CA
fYear :
2006
fDate :
17-20 Sept. 2006
Firstpage :
1466
Lastpage :
1470
Abstract :
The online estimation of traffic flow characteristics could be used for traffic control, incident management etc. This paper presents a real-time parameter estimation scheme based on a second-order macroscopic traffic flow model. The online estimation of the key parameters does not follow from standard estimation techniques due to the fact that the unknown parameters cannot be expressed in the form of a linear parametric model. In this paper we bypass this problem by using parallel estimators and an appropriate logic to choose the one that generates more accurate estimates. One month field traffic data from the Berkeley Highway Laboratory (BHL) are used to demonstrate the effectiveness of the proposed approach
Keywords :
parameter estimation; real-time systems; road traffic; traffic control; traffic engineering computing; field traffic data; incident management; linear parametric model; parallel estimator; real-time parallel parameter estimator; real-time parameter estimation; second-order macroscopic traffic flow model; traffic control; traffic flow characteristics online estimation; Communication system traffic control; Control systems; Laboratories; Logic; Parameter estimation; Parametric statistics; Road safety; Road transportation; Surveillance; Traffic control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Transportation Systems Conference, 2006. ITSC '06. IEEE
Conference_Location :
Toronto, Ont.
Print_ISBN :
1-4244-0093-7
Electronic_ISBN :
1-4244-0094-5
Type :
conf
DOI :
10.1109/ITSC.2006.1707430
Filename :
1707430
Link To Document :
بازگشت