Title :
Automatic Summarization for Chinese Text Based on Sub Topic Partition and Sentence Features
Author :
Li, Xueming ; Zhang, Jiapei ; Xing, Minling
Author_Institution :
Coll. of Comput. Sci., Chongqing Univ., Chongqing, China
Abstract :
With the explosion of electronic information on web, there is the increasing requirement to obtain the information needed accurately and efficiently. In this article, a method of automatic summarization based on sub topic partition and sentence features is proposed, in which the sentence weight is computed based on LexRank algorithm combining with the score of its own features in every sub topic, such as its length, position, cue words and structure. In addition, we reduce redundancy of candidate sentence collection. With evaluation on six different genres of data sets, our method could get more comprehensive and high-quality summarization with less redundancy than the original LexRank algorithm.
Keywords :
Internet; natural language processing; text analysis; Chinese text automatic summarization; LexRank algorithm; Web electronic information; sentence collection; sentence features; sub topic partition; Computer science; Educational institutions; Partitioning algorithms; Redundancy; Silicon; Tin; Vectors; Automatic summarization; LexRank; Redundancy; Sentence features; Sentence weight; Sub topic;
Conference_Titel :
Intelligence Information Processing and Trusted Computing (IPTC), 2011 2nd International Symposium on
Conference_Location :
Hubei
Print_ISBN :
978-1-4577-1130-5
DOI :
10.1109/IPTC.2011.40