Title :
Control of complex bio-molecular systems
Author :
Ming, Chin ; Wong, Pak Kin
Author_Institution :
Dept. of Mech. & Aerosp. Eng., California Univ., Los Angeles, CA
Abstract :
Nature has evolved extremely intelligent and complex adaptive systems. For instance, a cell fuses genetic processes with nanoscale sensors and actuators to result in one of the most efficient and autonomous molecular factories. These systems operate by integrating multiple levels of system architecture. Sensing, information processing, as well as cellular action are all fused at the local level. At each level of the system architecture, higher-order functionalities or emergent properties are often derived. These complexities cannot be simply extrapolated from its individual components and are far beyond our full understanding. This leads us towards cell mimetic approaches requiring fusion of biotechnology, nanotechnology, and informatics, for controlling and interrogating these complex biological systems. We have demonstrated that properly designed time-varying stimulations can self-organize and adjust the functionalities across multiple length scales to efficiently reach the desired control stare. This may yield new insight into unlocking and acquiring novel control modalities of the underlying mechanisms that drive the natural processes of life
Keywords :
biocontrol; genetics; microactuators; microsensors; molecular biophysics; nanotechnology; time-varying systems; cell mimetic; complex bio-molecular systems; genetic processes; nanoactuators; nanoscale sensors; time-varying stimulations; Adaptive systems; Biosensors; Control systems; Fuses; Genetics; Intelligent actuators; Intelligent sensors; Nanobioscience; Production facilities; Sensor fusion;
Conference_Titel :
Robotics and Biomimetics (ROBIO). 2005 IEEE International Conference on
Conference_Location :
Shatin
Print_ISBN :
0-7803-9315-5
DOI :
10.1109/ROBIO.2005.246390