Title :
Risk-sensitive filters for identification of hidden Markov models
Author :
Thorne, Jeremy ; Moore, John B.
Author_Institution :
Dept. of Syst. Eng., Australian Nat. Univ., Canberra, ACT, Australia
Abstract :
We derive risk-sensitive filters which can be used for both online and off-line identification of hidden Markov models. The identification is achieved by taking risk-sensitive conditional mean estimates of the number of state transitions (jumps) and occupation times and then using these values to estimate the parameters of the system. Furthermore, we demonstrate that the risk-sensitive filters approach the existing asymptotically optimal (risk-neutral) filters in the limit of the risk-sensitive parameter
Keywords :
filtering theory; hidden Markov models; parameter estimation; state estimation; state-space methods; hidden Markov models; identification; parameter estimation; risk-sensitive filters; state estimation; state space model; state transitions; Biomedical signal processing; Colored noise; Digital signal processing; Filters; Hidden Markov models; Parameter estimation; Recursive estimation; Signal processing algorithms; Speech recognition; State estimation;
Conference_Titel :
Information, Decision and Control, 1999. IDC 99. Proceedings. 1999
Conference_Location :
Adelaide, SA
Print_ISBN :
0-7803-5256-4
DOI :
10.1109/IDC.1999.754144