DocumentCode :
2667999
Title :
Nonlinear model predictive control utilizing a neuro-fuzzy predictor
Author :
Waller, Jonas B. ; Hu, Jinglu ; Kirasawa, K.
Author_Institution :
Abo Akademi, Finland
Volume :
5
fYear :
2000
fDate :
2000
Firstpage :
3459
Abstract :
This paper applies a quasi-ARMAX modeling technique, presented in the literature, to a process control framework. The use of this quasi-ARMAX modeling technique in nonlinear model predictive control (NMPC) formulations applied to simple nonlinear process control examples is investigated. The quasi-ARMAX predictor can be interpreted as a neuro-fuzzy predictor, and this neuro-fuzzy predictor is computationally straightforward and has shown excellent prediction capabilities. The predictor is thus well suited for NMPC purposes. Furthermore, the parameters of the neuro-fuzzy model can be argued to have explicit meaning, thus making the procedure of tuning the NMPC system more transparent when using the neuro-fuzzy predictor
Keywords :
fuzzy neural nets; identification; nonlinear control systems; predictive control; process control; NMPC system tuning; neurofuzzy predictor; nonlinear model predictive control; process control; quasi-ARMAX modeling; Chemical industry; Electrical equipment industry; Fuzzy systems; Industrial control; Open loop systems; Optimal control; Predictive control; Predictive models; Process control; Refining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics, 2000 IEEE International Conference on
Conference_Location :
Nashville, TN
ISSN :
1062-922X
Print_ISBN :
0-7803-6583-6
Type :
conf
DOI :
10.1109/ICSMC.2000.886544
Filename :
886544
Link To Document :
بازگشت