DocumentCode :
2668815
Title :
Estimating the parameters of mixed Bayesian networks from incomplete data
Author :
McMichael, Daniel ; Liu, Lin ; Pan, Heping
Author_Institution :
Cooperative Centre for Sensor Signal & Inf. Processing, Mawson Lakes, SA, Australia
fYear :
1999
fDate :
1999
Firstpage :
591
Lastpage :
596
Abstract :
Under complete data, there are closed-form maximum likelihood estimators for mixed Bayesian networks composed of discrete models, conditional Gaussian models and conditional Gaussian regression models. We describe an extension to Lauritzen´ expectation-maximisation algorithm, which estimates the parameters of discrete networks from incomplete data, to the more general case of mixed continuous and discrete variable networks. A simple mixed network that is easy to manipulate is the leaf node continuous Bayesian network (LNCBN). Fast algorithms for estimation and marginalisation of LNCBNs are described
Keywords :
belief networks; maximum likelihood estimation; recursive estimation; Bayesian networks; Gaussian regression models; Lauritzen EM algorithm; conditional Gaussian models; discrete models; expectation-maximisation algorithm; maximum likelihood estimation; parameter estimation; Algebra; Australia; Bayesian methods; Character generation; Computer networks; Graphical models; Information processing; Lakes; Parameter estimation; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information, Decision and Control, 1999. IDC 99. Proceedings. 1999
Conference_Location :
Adelaide, SA
Print_ISBN :
0-7803-5256-4
Type :
conf
DOI :
10.1109/IDC.1999.754221
Filename :
754221
Link To Document :
بازگشت