Title :
Privacy-preserving location authentication in WiFi with fine-grained physical layer information
Author :
Yingjie Chen ; Wei Wang ; Qian Zhang
Author_Institution :
Fok Ying Tung Grad. Sch., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
Abstract :
The surging deployment of WiFi hotspots in public places drives the blossoming of location-based services (LBSs) available. A recent measurement reveals that a large portion of the reported locations are either forged or superfluous, which calls attention to location authentication. However, existing authentication approaches breach user´s location privacy, which is of wide concern of both individuals and governments. In this paper, we propose PriLA, a privacy-preserving location authentication protocol that facilitates location authentication without compromising user´s location privacy in WiFi networks. PriLA exploits physical layer information, namely carrier frequency offset (CFO) and multipath profile, from user´s frames. In particular, PriLA leverages CFO to secure wireless transmission between the mobile user and the access point (AP), and meanwhile authenticate the reported locations without leaking the exact location information based on the coarse-grained location proximity being extracted from user´s multipath profile. Existing privacy preservation techniques on upper layers can be applied on top of PriLA to enable various applications. We have implemented PriLa on GNURadio/USRP platform and off-the-shelf Intel 5300 NIC. The experimental results demonstrate the practicality of CFO injection and accuracy of multipath profile based location authentication in a real-world environment.
Keywords :
computer crime; computer network security; cryptographic protocols; mobile radio; wireless LAN; AP; CFO injection; GNUradio platform; LBS; PriLA; USRP platform; Wi-Fi hotspot; access point; carrier frequency offset; coarse-grained location proximity; fine-grained physical layer information; location forgery; location superfluousness; location-based service; mobile user location privacy; multipath profile; off-the-shelf Intel 5300 NIC; privacy preservation technique; privacy-preserving location authentication protocol; secure wireless transmission; Authentication; Encryption; IEEE 802.11 Standards; Mobile communication; OFDM; Privacy; Wireless communication;
Conference_Titel :
Global Communications Conference (GLOBECOM), 2014 IEEE
Conference_Location :
Austin, TX
DOI :
10.1109/GLOCOM.2014.7037570