DocumentCode :
2671845
Title :
Characterization of Partial Sheffer Functions in 3-Valued Logic
Author :
Haddad, Lucien ; Lau, Dietlinde
Author_Institution :
Math. et Inf., Coll. Militaire R. du Canada, Kingston, ON
fYear :
2007
fDate :
13-16 May 2007
Firstpage :
34
Lastpage :
34
Abstract :
partial function f on a k-element set k is a partial Sheffer function if every partial function on k is definable in terms of f. Since this holds if and only if f belongs to no maximal partial clone on k, a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on k. We present minimal coverings of maximal partial clones on k for k = 2 and k = 3 and deduce criteria for partial Sheffer functions on a 2-element and a 3-element set.
Keywords :
computational complexity; functions; multivalued logic; 3-valued logic; k-element set; maximal partial clones; partial Sheffer functions; Algebra; Cloning; Lattices; Logic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 2007. ISMVL 2007. 37th International Symposium on
Conference_Location :
Oslo
ISSN :
0195-623X
Print_ISBN :
0-7695-2831-7
Type :
conf
DOI :
10.1109/ISMVL.2007.12
Filename :
4215957
Link To Document :
بازگشت