DocumentCode :
2677994
Title :
Hyperspectral image classification with mahalanobis relevance vector machines
Author :
Camps-Valls, Gustavo ; Rodrigo-González, Antonio ; Muñoz-Marí, Jordi ; Gómez-Chova, Luis ; Calpe-Maravilla, Javier
Author_Institution :
Univ. de Valencia, Valencia
fYear :
2007
fDate :
23-28 July 2007
Firstpage :
3802
Lastpage :
3805
Abstract :
This paper introduces the use of Relevance Vector Machines (RVM) for remote sensing hyperspectral image classification. We also include the Mahalanobis kernel in the formulation of the RVM to take into account the covariance of the features in the classification process. Experimental results in different scenarios confirm the accuracy and robustness of the proposed method, and also the ease of free parameters tuning.
Keywords :
geophysical techniques; image classification; Mahalanobis kernel; RVM; Relevance Vector Machines; features covariance; hyperspectral image classification; Bayesian methods; Gaussian processes; Hyperspectral imaging; Hyperspectral sensors; Image classification; Kernel; Remote sensing; Robustness; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-1211-2
Electronic_ISBN :
978-1-4244-1212-9
Type :
conf
DOI :
10.1109/IGARSS.2007.4423671
Filename :
4423671
Link To Document :
بازگشت