DocumentCode :
2678359
Title :
Stochastic models of SLC HR SAR images
Author :
Soccorsi, Matteo ; Datcu, Mihai
Author_Institution :
Remote Sensing Technol. Inst., Oberpfaffenhofen
fYear :
2007
fDate :
23-28 July 2007
Firstpage :
3887
Lastpage :
3890
Abstract :
The paper presents two algorithms for texture primitive feature extraction on Single Look Complex (SLC) and Polarimetric Synthetic Aperture Radar (PolSAR) SLC data. We assume the data to be modeled by a Gauss-Markov Random Field (GMRF): a complex GMRF model for characterizing the spatial correlation in SLC data and an extension of the model for inter-band correlation characterization. The complex GMRF characterizes the spatial relationship of a two-dimensional complex signal, i.e. SLC SAR data. The extended model characterizes the spatial interaction and the inter-band pixels correlation between the polarimetric complex channels. The Bayesian approach permits to deal with model fitting and selection in a direct way. The results are presented on a polarimetric E-SAR L band scene of Mannheim, Germany.
Keywords :
Bayes methods; feature extraction; radar polarimetry; synthetic aperture radar; 2D complex signal; Bayesian approach; Gauss-Markov random field; Germany; Mannheim; PolSAR data; SLC HR SAR images; polarimetric synthetic aperture radar; single look complex data; stochastic models; texture primitive feature extraction; Covariance matrix; Feature extraction; Information filtering; Information filters; Polarization; Pulse width modulation; Radar scattering; Speckle; Stochastic processes; Synthetic aperture radar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-1211-2
Electronic_ISBN :
978-1-4244-1212-9
Type :
conf
DOI :
10.1109/IGARSS.2007.4423693
Filename :
4423693
Link To Document :
بازگشت