DocumentCode :
268147
Title :
Fluctuations of an Improved Population Eigenvalue Estimator in Sample Covariance Matrix Models
Author :
Jianfeng Yao ; Couillet, Romain ; Najim, Jamal ; Debbah, Mérouane
Author_Institution :
Telecom ParisTech, Paris, France
Volume :
59
Issue :
2
fYear :
2013
fDate :
Feb. 2013
Firstpage :
1149
Lastpage :
1163
Abstract :
This paper provides a central limit theorem for a consistent estimator of population eigenvalues with large multiplicities based on sample covariance matrices. The focus is on limited sample size situations, whereby the number of available observations is comparable in magnitude to the observation dimension. An exact expression as well as an empirical, asymptotically accurate, approximation of the limiting variance is derived. Simulations are performed that corroborate the theoretical claims.
Keywords :
covariance matrices; eigenvalues and eigenfunctions; estimation theory; central limit theorem; covariance matrices; eigenvalue estimator; sample covariance matrix model; Convergence; Covariance matrices; Eigenvalues and eigenfunctions; Estimation theory; Central limit theorem; G-estimation; Stieltjes transform; eigenvalue estimators; random matrix theory;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2222862
Filename :
6323032
Link To Document :
بازگشت