DocumentCode :
2683827
Title :
Path planning using genetic algorithms for mini-robotic tasks
Author :
Ayala-Ramirez, V. ; Perez-Garcia, A. ; Montecillo-Puente, F.J. ; Sanchez-Yanez, R.E. ; Martinez-Labrada, E.
Author_Institution :
F.I.M.E.E., Universidad de Guanajuato, Mexico
Volume :
4
fYear :
2004
fDate :
10-13 Oct. 2004
Firstpage :
3746
Abstract :
We present a genetic algorithm-based method to optimize trajectory planning for mini-robotic tasks. Codifying a number of motion primitive parameters into computational chromosomes does this. Each trajectory is composed of a fixed number N of straight segments. We search with a genetic algorithm the length and direction parameters of the N path segments that let us to arrive a target position from the current robot position. We show design choices of the genetic operators (selection, mutation and fitness function) used in our genetic algorithm implementation. We present simulations of our method and experimentation on a mini-robotic platform is implemented.
Keywords :
genetic algorithms; manipulators; path planning; position control; computational chromosomes; fitness function; genetic algorithms; genetic operators; mini-robotic tasks; motion primitive parameters; path planning; robot position; trajectory planning optimization; Algorithm design and analysis; Biological cells; Databases; Genetic algorithms; Genetic mutations; Mobile robots; Optimization methods; Path planning; Robot kinematics; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 2004 IEEE International Conference on
ISSN :
1062-922X
Print_ISBN :
0-7803-8566-7
Type :
conf
DOI :
10.1109/ICSMC.2004.1400927
Filename :
1400927
Link To Document :
بازگشت